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ABSTRACT

Given two kinds of functions f(X) and hk(y) defined on the m-dimensional
Euclidean space R™ (m = 1) and the set of positive real numbers respectively,
we give an estimation of growth of subharmonic functions u(P) defined on
R™™" (n 2 1) such that

u(P)= f(XOR( Y1)

forany P=(X.Y), X €R", Y € R", where | Y|| denotes the usual norm of Y.
Using an obtained result, we give a sharpened form of an ordinary
Phragmén-Lindel6f theorem with respect to the generalized cylinder D X R",
with a bounded domain D in R™.

1. Introduction

Let X =(x,,x>,...,xx) denote a point in the k-dimensional Euclidean space
R* (k = 1) and || X|| denote the norm of X

[X|=Vxi+x3+ - +xi

The k-dimensional Lebesgue measure of a set § in R* is denoted by | S |. With a
non-negative measurable function f(X) defined on R™ (m = 1), we associate a
non-increasing function n = F;(£) on the interval (0, + ) such that for every
t 20 the m-dimensional measure |S;(t){ of the set

S(={xeRrR"|fC)z1)
is equal to the one-dimensional Lebesgue measure of the set

{¢lo<e< +o, F(&)z 1.
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Such a function F;(&) is obtained by considering the inverse function of
& =18/(n)| and is uniquely determined except on a countable set.
Domar [5, Theorem 3] proved the following fact:

Let U, be an open set in R™ and denote the bounded set
{(Y=(y...9.)ER" a; <y, <b (i=12,...,n)}
by F, where a; and b; are constants satisfying a; < b, (i = 1,2,....n). Let f(X) be a

non-negative measurable function on R™ satisfying

0 [ € mon Ferde <+

and u(X.Y) be a subharmonic function on

E=UxF={X Y)ER"™"

XEU,.YEF}

such that
u(X,Y)= f(X) onE.

Then
u(X,Y)=K

on any subset of E which is situated at a distance & from the boundary of E, where
K is a constant depending only on f(X), d and b —a, (i=1,2,...,n).

A similar theorem was proved in Yoshida [11] in terms of spherical coordi-
nates and applied to answer a question raised by Hayman [7; 3.6].

In the present paper, we first give a result extending Domar’s result in the
sense that

(i) in place of F, any open set U, (U, CR") can be taken,

(i) given a non-negative measurable function f(X) on R™ satisfying (1) and a
certain function g(Y) defined on U, a subharmonic function u(X,Y) domi-
nated by f(X)g(Y)on U, = U, X U, is also dominated by Kg(Y') with a constant
K independent of u(X,Y), on any subset of U, located at a positive distance
from the boundary of U,.

In connection with the growth property of g(Y), we consider the special case
where R™, {Y ER" ,H Y||> yo} (yo=0 is a constant) and a function free from
rotation are taken as U, U, and g(Y), respectively.

We next prove an ordinary Phragmén-Lindeldéf theorem generalized in a
satisfactory form, which extends a result of Deny and Lelong ([3, Théoréme 2}
and also [4, Théoréme 2]) and a result of Brawn [1, Theorem 1].
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Using the results thus obtained, we finally give a type of Phragmén-Lindelof
theorem which is different from the ordinary type and falls under the same
category as a result in Wolf {10, Lemma] and a result in Yoshida [11, Corollary
3}

I wish to thank Professor M. Ohtsuka for his continuous advice and a referee
for his valuable suggestions.

2. Statements of fundamental results

The proofs of all theorems in this section will be given in Section 4. The
boundary of a set S in R* and the distance between two sets S, and S, in R* are
denoted by 4S and dis(S,, S.), respectively. We denote the k-dimensional closed
ball having a center P € R* and a radius r by Gi(P,r). Let U be an open set in
R* (k =1). A function §(P) defined on U and satisfying

fnf ¥(P)>0

is said to grow regularly, if there is a constant p =1 such that

¥ (P)= pi(Po)
for every P, € U and every P € Gi(Po,1)N U.

The following result is obtained from Domar’s result stated in Section 1.

THEOREM 1. Let U, and U, be open sets in R™ (m=1) and R" (nZ 1),
respectively. Let f(X) be a non-negative measurable function on R™ satisfying (1)
and g(Y) be a regularly growing function on U,. Suppose that u(P) is a
subharmonic function on U= U, X U, such that

u(P)=f(X)g(Y)
forany P = (X, Y) € U,. Then, for any £ >0, there exists a constant K dependent
only on f(X), pn and ¢ such that
u(P)= Kg(Y)
for every P =(X,Y) € U,, dis(P,dU,)> ¢.
Let yo =0 be a constant and h(y) be a regularly growing function defined on
(yo, + ). It is easily seen that h(|Y|) defined on {Y ER" || Y| > yo} grows

regularly. If we put U;=R"™, U,={YER"||Y|>yo, g(Y)=h(|Y[) and
g€ =1 in Theorem 1, we immediately have
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THEOREM 2. Let f(X) be a non-negative measurable function on R™ satisfy-
ing (1) and h(y) be a regularly gorwing function on (yo, + ), where yo2 0 is a
constant. Suppose that u(X, Y) is a subharmonic function on R™ X R" such that

u(X, V)= f(XOh( Y)

for any (X, Y)ER™ X R", || Y| > yo. Then, there exists a constant K dependent
only on f(X) and p such that

u(X,Y)= Kh(| Y]
for every (X, Y)ER"™ X R", | Y||> yo+1.

ReMARK. If a function h(y) on (yo, +®) grows regularly, there are two
positive constants A and B such that

h(y)= Ae™  (y> o)
In fact, let y, y > yo, be any number and take a non-negative integer n satisfying
n=y—-y,<n+l.
Then
h(y)= ph(ya+ )< p"h(yo+ 1)S w"0h(yo+1)= Ae™,
where
A =u"h(y+1), B=logp.
It follows from Remark that h(y) in Theorem 2 must satisfy the growth
condition
2) h(y)=0(e”)  (y— +=)
for some constant B >0. The following Theorem 3 is a generalization of
Ohtsuka’s [6], which shows that (2) is almost sharp.
THEOREM 3. For any € >0, there exist a subharmonic function u.(X,Y) on
R™ X R" satisfying
3) Sup u (X, Yyexp(—= | Y[[") =+

and a non-negative measurable function f(X) on R™ satisfying (1) such that

4 (X, Y)=f.(Xexp(| Y[™®) onR™xR"
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QuesTION 1. The function h(y)=exp(y'*") does not satisfy (2). So we ask:
Is Theorem 2 still true, even if the regular growth condition of h(y) is replaced
by the weaker condition (2)?

The following Theorem 4 shows that the exponent —(m — 1)/m in (1) is best
possible in Theorems 1 and 2. Our example is essentially a multi-dimensional
variant of Domar’s [S, Theorem 5].

THEOREM 4. There exist a subharmonic function u(X,Y) on R™ XR", a
non-negative measurable function f(X) on R™ satisfying

) Ll £ log" Fi(¢£)dt < +

forany | <(m —1)/m, and a regularly growing function h(y) on (0, + ) such that
(6) u(X, Y)SfXOR(Y[)  onR™ x(R" —{0})

and

7 o Sup uX VR = e

QuesTioN 2. The non-negative measurable function f(X) on R™ which we
shall give to prove Theorem 4 has the property

K& =log' F(§) S K¢

for sufficiently small ¢ >0, where K, and K, are two positive constants. So, H.
Aikawa asks: Is it possible to find a subharmonic functionu(X,Y)on R™ XxR", a
non-negative measurable function f(X) on R™ satisfying

®) log'F;(§)=0(¢7™)  (£—-0)

and a regularly growing function h(y) on (0, + ) such that (6) and (7) are
satisfied? If this question is negatively answered, we have an interesting result
that (1) is replaced by (8) in Theorem 2.

3. Extended Phragmén-Lindelof theorems

By R", we denote the set of all positive real numbers. Let G be a domain in
R* (k Z2). When a function u(P) on G is given, we say that u(P) satisfies the
Phragmén-Lindelof boundary condition on 3G, if

fim u(P)s0

PEGP—Q
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for every Q € G. When two domains G, and G,
G.CR™ (m=z1), G,CR" (nz1),
and a function (X, Y) on G, X G are given, the maximum modulus M (u, y) of

u(X,Y) is defined by

M(u,y)= sup u(X,Y) (y >0).

(X.Y)EG,XG,]|Y]=y
Hardy and Rogosinski [6, Theorem 3] proved:

THEOREM HR. Let I be an open interval (a,B) and u(z) be a subharmonic
function on the half-strip

A={z=X+iY|X€ELYER"

such that u(z ) satisfies the Phragmén—Lindelsf boundary condition on d A and

lim M (u,yJexp{ = (B — a)'my} 0.
Then
u(z)=0 (z €A).

Deny and Lelong [3, Théoréme 2], [4, Théoréme 2] generalized Theorem HR
to a function defined on a half-cylinder in the Euclidean space of higher
dimension. In the following, a bounded domain in R™ having sufficiently smooth
boundary (if m =1, an open interval) is called a bounded regular domain. For a
given bounded regular domain D, let A, >0 be the first eigenvalue of the
boundary value problem with respect to D:

Af+Apf=0 onD, f=0 onéD,

where A denotes the Laplace operator (if m =1, A = d*/dx"). If D is an interval
{a,B), we easily see

\/)—t,_,=(ﬁ —a)'m

TueorReM DL. Let D be a bounded regular domain in R™ (m = 1) and u(P)
be a subharmonic function on T'=D XR" such that u(P) satisfies the
Phragmén-Lindeléf boundary condition on 3T and

EM(u,y)exp(— VApy)=0.
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Then
u(P)=0 (Perl).

On the other hand, Brawn [1, Theorem 1] generalized Theorem HR to a
subharmonic function on the strip (0,1)x R" in R""' (n=1).

THEOREM B. Let u(P) be a subharmonic function on
Q=01)xR" (nz1)

such that u(P) satisfies the Phragmén—Lindeléf boundary condition on 3§} and

lim M(u,y)y" " exp(— my) = 0.

y—x

Then
u(P)=0 (PE).
The following Theorem 5 generalizes both Theorem DL and Theorem B.

THEOREM 5. Let D be a bounded regular domain in R™ (m 2 1) and u(P) be
a subharmonic function on I1=D X R" (n = 1) such that u(P) satisfies the
Phragmén-Lindelof boundary condition on 311 and

lim M (i, )y "exp(— VApy)=0.

y—=

Then
u(P)=0 (P €Il

We now state the main result in this paper which further sharpens Theorem 5.
It is the result based on Theorems 2 and 5.

THEOREM 6. Let D be a bounded regular domainin R™ (m= 1) and u(X,Y)
be a subharmonic function on Il=DXxR" (n=z=1) satisfying the
Phragmén-Lindelof boundary condition on 311. Suppose that for a non-negative
measurable function f(X) on R™ satisfying (1)

u(X, V)= e(lyDFCONYI* " exp(VAo Y])  onD x(R” - {0})
where €(t) is a function on R* decreasing to 0 as t— +«. Then
u(X,Y)=0 on IL

The following Theorem 7 shows that the exponent —(m — 1)/m in (1) is best
possible in Theorem 6.
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THEOREM 7. Let
Dy={X€R"||X|<2'7} (m=1).

Then there exist an unbounded subharmonic function u(X,Y) on Il = Dy X R"
(n = 1) satisfying the Phragmén-Lindelof boundary condition on 31, a function
£(t) on R™ decreasing to 0 as t — + and a non-negative measurable function
f(X) on R™ satisfying (5) for any | <(m —1)/m, such that

© wXYV)=e(YIFCOIYI" " exp(VAn i Y)Y  on Dux (R" —{0}).

The proofs of Theorems 5, 6 and 7 will be given in Section 5.

4. Proofs of Theorems 1, 3 and 4

PrOOFOF THEOREM 1. (This is the proof suggested by a referee.) Let u, u = 1,
be a constant such that

(10) g(Y) = ug(Yo)

for any Yo € U: and any Y € C,(Y,,1)N U,. Take any ¢, 0<& <2, and any
point Py =(X,, Yo) € U, dis(Py, dU,) > €. From (10) we have

u(P)= pg(Yo)f(X)

for any P =(X,Y)& Cn+n(Ps,1)N Uy. Consider the subharmonic function
u(P){ug(Yo)}™" on the set

B(Po)={P = (X, Y)E Up|I| X — Xo|| < e/VB, |y~ y| < e/VBn(i =12,....n)}

where Y =(y,,y2...,y.) and Yo =(y1,y%...,¥%). If we apply Domar’s result
stated in Section 1, we obtain a constant K* independent of P, and u(X, Y)such
that

u(P)é K*[Lg(Yo)

for every P € ®(P,) and hence
u(P)= K*ug(Yo).
Putting K = K*pu, we finally have that
u(P)= Kg(Y)
for every P =(X,Y) € U,, dis(P,dUo) > &.
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PROOF OF THEOREM 3. Given any ¢ >0, consider u*(X,Y) on R" xR"
defined by
FY I (cosl| X Dexpd] Y™ - I X Y
ud(X.Y)= on{(X,Y)|[ XER",
0 elsewhere.

")
X|<2'mY€ER")

If we write | X||=x, || Y||=y and

1+e

glx,y)=exp(y'™ —x%y")

for simplicity, we have

ut m-—1dut n—10ut 9’ut
ax’ x  dx y dy 9y’

Au*t =
Zgu Yy {Q+ey¥—o(M)}cosx +y*{4—x*(m—1)y “}xsinx

gy {1+ ey - o(Mcos x + y*{27'V2 - o(1)}]
@'r=x=2"my—> +x)
g,y " {27'V2(1+ ey - o(1)— (m - 1)y *x 'sinx}
= g(xy)y {2 V21 + el - o)) O<x=d4"'my— +)

%

by an elementary computation. This shows that u*(X,Y) is subharmonic on
R™ x{Y €R"||Y|> a} for a sufficiently large a.
Choose a constant M, so that

WX, Y)=M,
on R™" X{YER"

| Y| <2a}. Define

u (X, Y)=max{u*(X, Y),M.} onR™ X R"
and note that u. is subharmonic on R™ X R". Put
11 fo(X)=max{| X[ M.} onR™

Since
F.(6)=(A.£)Y" (E<AMP),

f.(X) satisfies (1). We observe (3), because
u. 0, Y)exp(—y"")> +®  asy—.tx,
We next see that

exp(x’y)>x’y* onR*xR”
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and hence
x>y exp(—x’y’) onR' xR

From this fact and (11), (4) follows immediately.
PROOF OF THEOREM 4. Put
v(X, Y) = exp(e"cos|| X |)cos(e" sin|| X[) onR™xR"
and consider
u*(X,Y)={v(X, Y)I"

If we write | X]|=x and || Y|| =y, we have

Au* = 2mp*™" [(2m - 1){(3;”)2+ (j—;’)}+ vAv]

=2mv " “exp(y +2e” cos x)q(x, y)
where

q{x,y)=

(2m — 1)e” + cos(e’ sin x){ n ; lcos(x +e’sinx)— mx— 1sin(x +e’ sinx)].

Since
sin(x +e’sinx)=x+e’sinx=x(1+e’) (0<x<2'm),
we see that
q(x,y)zme’ —(m—1)—(n—1)y”"

if 0<x <27'm, e”sinx <2 'm. Hence, for a sufficiently large yo, yo> log(2™'7),
we have

Au*z=0
on the set

S={(X,Y)ER" XR"

IX|< w2, e™sin|| X< #/2,]| Y]I> yol.

Let
Do={X€R"||X|< w/2}.

Choose a positive constant M such that

u*(X,Y)=M
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on Dox{YER"
R™ X R" by

Y| <2yo} and define a subharmonic function u(X,Y) on

M 'max{u*(X,Y),M} on S,
u(X,Y)=

1 elsewhere.

We define f(X) on R™ by
(12) f(X)= sup u(X,Y)
and h(y) on R” by
h(y)=1.
It is evident that h(y) is a regularly growing function on R and (6) holds. Since
u(0,Y)= M "'exp(2me"™")

at any Y € R" having sufficiently large || Y|, we have (7).
Finally, we shall show that (5) holds for any I, I <(m —1)/m. Put

v*(x,y) = exp(e’ cos x)cos(e”’ sin x)

for x €R and y € R, y > y,. Then, for any fixed y, v*(x, y) increases from 0 to
exp(e’) as x decreases from sin"'(2"'7e”) to 0. This fact gives that

u(X,Y)>M'¢"
on the domain surrounded by the set
(X, Y)ES|o(X, Y)=1}
for a sufficiently large . For a given ¢, consider the curve
L ={(x,y)€R2|v*(x,y)= t0=x < 7w/2}

in the plane and put

x* = max x.
(x,y)eL

Since
d - Y 1
—de tan(x + e’ sinx)

along L, we have

x¥+e sinx*=w/2, (x*,y*EL
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Hence, x* satisfies
sinx*exp{(2”'m — x*)cotx*} = ¢.
Since
|SH M7 = Anx ™"
from (12), we have
Fy(€)= M”'[sin{(A ') }]"" expl2m{2 ™ m — (A1) }eotl(47'6)"™ )]
Thus, for a sufficiently small € >0,
K¢ =log F(§)= Kot ™"

where K and K are two positive constants. This gives (5) forany [ < {(m —1)/m.

5. Proofs of Theorems 5, 6 and 7

ProoF of THEOREM 5. This proof is based on both methods used to prove
Theorem DL and Theorem B. For a given bounded regular domain D, we
denote the positive eigenfunction corresponding to the eigenvalue Ap by fp(X).

Define hp(X,Y) on Il by
ho (X, Y) = fo N Y I L Vo] Y,

where I.,-i(y) is the Bessel function of the third kind, of order n/2—1 (see e.g.

Watson [8, p. 77]). It is easy to see that hy (X, Y) is harmonic on II. We also
remark that

Lpa(y) = Qmy) e’ (1+0(1)) (y— +x)

(see Watson [8, p. 203)).
First, consider a subharmonic function u,(P) on II defined by

(13) uy(P)=u(P)~niho(P)  (n>0).
Take a closed ball B C D and choose a positive constant &, such that
fD (X) = €1 on B.

If we choose a positive constant y, such that

M(uy)<2eomCoy" exp(VAoy)  (y Zy1)

where

CD = (277' V AD)_HZ,
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we see that
u(P)= emCo{~27" = o(DH Y " exp(V Ao Y )

for any P=(X,Y), X €B, | Y|z y.. Hence, there are a value M and a point
P, € B X R" such that

(14) u(Po)=M and u(P)=M on B XxXR"

Next, by using the properties of monotonicity and continuity of the eigenvalues
(e.g. see Courant and Hilbert [2, Theorem 3 on p. 409 and Theorem 10 on p.
421)), take a bounded regular domain D*, D* CR™ such that

(D-B)U4(D—-B)CD* and Ap <Ap-<Ap_p.
Consider a subharmonic function u,(P) on (D — B)x R" defined by
(15) u(P) = w(P) = n2ho-(P)  (m2>0).
If we take a positive number ¢, such that
for(X)Ze, on(D-B)UJD-B)

and a number y, such that

M(u,y) < £:1:Co-y" " exp(VApy) (¥ Z y2),
we have that

u(P)= u(P)— n:hp-(P)

= 21 Co- || Y[ [exp{(V Ao — Vo) Y [} = (1 + 0(1))]

for any P=(X,Y)E(D - B)XR", | Y||= y.. Hence, with (14) the maximal
principle gives that

u(P) = max(0, M) on{D ~B)XR".
We also have that
u;(P) = max(0,M) on(D-B)xR",
because 7, is chosen arbitrarily small in (15). Further, we have from (14) that
u(P) = max(0, M) onD xXR".
The maximal principle and (14) give that M =0 and hence

w(P)<0 onDXR"
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Letting 7,—0 in (13), we conclude that
u(P)=0 onD X R".

PrOOF OF THEOREM 6. For each positive integer m, take a number ¢, such
that

e()=1/m (t=t,).

Then
u(X, Y)= fXO{m [ Y [*""exp(V 2] Y |}

at every (X, Y)ED x{Y ER"

| Y|z t.}. If we put

hu(y) = m™y" " exp(Vany),

we easily see that

hu(y + DS Ba(y)exp(VAoy) (v > tn).

Hence, if we also put u(X, Y)=00on R™ x R" —II and apply Theorem 2, we can
find a constant K independent of m such that

u(X, Y)SKh, (| Y) = Km | Y] "exp(V o] Y )
for every (X,Y)ED x{Y€R"

| Y{|> t. + 1}. This gives that

lim M (u, y)y" " exp(— VAy) 0.
lim

The conclusion follows from Theorem 5.

PrOOF OF THEOREM 7. For the subharmonic function u(X, Y) taken in the
proof of Theorem 4, consider a function

u(X,Y)-1 onlly= Dy x R".

Representing this function by u(X, Y) again, we easily see that it satisfies the
Phragmén-Lindeldf boundary condition on 4Il,. Define f(X) on R™ by

YER"

sup u(X,Y) on D,
f(X)= {

0 elsewhere.
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Then we can show (5) for any [ < (m —1)/m as in the proof of Theorem 4. If we
define () on R™ by

e(t)=t"""exp(— Vo, t),

we evidently obtain that (9) holds for these f(X) and e(t).
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