ON SUBHARMONIC FUNCTIONS DOMINATED BY CERTAIN FUNCTIONS

ΒY

H. YOSHIDA

Department of Mathematics, Faculty of Sciences, Chiba University, Chiba City, Japan

ABSTRACT

Given two kinds of functions f(X) and h(y) defined on the *m*-dimensional Euclidean space \mathbb{R}^m $(m \ge 1)$ and the set of positive real numbers respectively, we give an estimation of growth of subharmonic functions u(P) defined on \mathbb{R}^{m+n} $(n \ge 1)$ such that

$u(P) \leq f(X)h(||Y||)$

for any $P = (X, Y), X \in \mathbb{R}^m, Y \in \mathbb{R}^n$, where ||Y|| denotes the usual norm of Y. Using an obtained result, we give a sharpened form of an ordinary Phragmén-Lindelöf theorem with respect to the generalized cylinder $D \times \mathbb{R}^n$, with a bounded domain D in \mathbb{R}^m .

1. Introduction

Let $X = (x_1, x_2, ..., x_k)$ denote a point in the k-dimensional Euclidean space R^k $(k \ge 1)$ and ||X|| denote the norm of X

$$||X|| = \sqrt{x_1^2 + x_2^2 + \dots + x_k^2}.$$

The k-dimensional Lebesgue measure of a set S in \mathbb{R}^k is denoted by |S|. With a non-negative measurable function f(X) defined on \mathbb{R}^m $(m \ge 1)$, we associate a non-increasing function $\eta = F_f(\xi)$ on the interval $(0, +\infty)$ such that for every $t \ge 0$ the m-dimensional measure $|S_f(t)|$ of the set

$$S_f(t) = \{ X \in R^m \mid f(X) \ge t \}$$

is equal to the one-dimensional Lebesgue measure of the set

$$\{\xi \mid 0 < \xi < +\infty, F_f(\xi) \ge t\}.$$

Received June 16, 1985 and in revised form October 30, 1985

Such a function $F_f(\xi)$ is obtained by considering the inverse function of $\xi = |S_f(\eta)|$ and is uniquely determined except on a countable set.

Domar [5, Theorem 3] proved the following fact:

Let U_1 be an open set in \mathbb{R}^m and denote the bounded set

$$\{Y = (y_1, \ldots, y_n) \in \mathbb{R}^n, a_i < y_i < b_i \ (i = 1, 2, \ldots, n)\}$$

by F, where a_i and b_i are constants satisfying $a_i < b_i$ (i = 1, 2, ..., n). Let f(X) be a non-negative measurable function on R^m satisfying

(1)
$$\int_0^1 \xi^{-(m-1)/m} \log^+ F_f(\xi) d\xi < +\infty$$

and u(X, Y) be a subharmonic function on

$$E = U_1 \times F = \{ (X, Y) \in \mathbb{R}^{m+n} \mid X \in U_1, Y \in F \}$$

such that

$$u(X,Y) \leq f(X)$$
 on E .

Then

$$u(X, Y) \leq K$$

on any subset of E which is situated at a distance δ from the boundary of E, where K is a constant depending only on f(X), δ and $b_i - a_i$ (i = 1, 2, ..., n).

A similar theorem was proved in Yoshida [11] in terms of spherical coordinates and applied to answer a question raised by Hayman [7; 3.6].

In the present paper, we first give a result extending Domar's result in the sense that

(i) in place of F, any open set U_2 ($U_2 \subset \mathbb{R}^n$) can be taken,

(ii) given a non-negative measurable function f(X) on R^m satisfying (1) and a certain function g(Y) defined on U_2 , a subharmonic function u(X, Y) dominated by f(X)g(Y) on $U_0 = U_1 \times U_2$ is also dominated by Kg(Y) with a constant K independent of u(X, Y), on any subset of U_0 located at a positive distance from the boundary of U_0 .

In connection with the growth property of g(Y), we consider the special case where R^m , $\{Y \in R^n | || Y || > y_0\}$ ($y_0 \ge 0$ is a constant) and a function free from rotation are taken as U_1, U_2 and g(Y), respectively.

We next prove an ordinary Phragmén-Lindelöf theorem generalized in a satisfactory form, which extends a result of Deny and Lelong ([3, Théorème 2]) and also [4, Théorème 2]) and a result of Brawn [1, Theorem 1].

Using the results thus obtained, we finally give a type of Phragmén-Lindelöf theorem which is different from the ordinary type and falls under the same category as a result in Wolf [10, Lemma] and a result in Yoshida [11, Corollary 3].

I wish to thank Professor M. Ohtsuka for his continuous advice and a referee for his valuable suggestions.

2. Statements of fundamental results

The proofs of all theorems in this section will be given in Section 4. The boundary of a set S in \mathbb{R}^k and the distance between two sets S_1 and S_2 in \mathbb{R}^k are denoted by ∂S and dis (S_1, S_2) , respectively. We denote the k-dimensional closed ball having a center $P \in \mathbb{R}^k$ and a radius r by $C_k(P, r)$. Let U be an open set in \mathbb{R}^k ($k \ge 1$). A function $\psi(P)$ defined on U and satisfying

$$\inf_{P \in U} \psi(P) > 0$$

is said to grow regularly, if there is a constant $\mu \ge 1$ such that

$$\psi(P) \leq \mu \psi(P_0)$$

for every $P_0 \in U$ and every $P \in C_k(P_0, 1) \cap U$.

The following result is obtained from Domar's result stated in Section 1.

THEOREM 1. Let U_1 and U_2 be open sets in \mathbb{R}^m $(m \ge 1)$ and \mathbb{R}^n $(n \ge 1)$, respectively. Let f(X) be a non-negative measurable function on \mathbb{R}^m satisfying (1) and g(Y) be a regularly growing function on U_2 . Suppose that u(P) is a subharmonic function on $U_0 = U_1 \times U_2$ such that

$$u(P) \leq f(X)g(Y)$$

for any $P = (X, Y) \in U_0$. Then, for any $\varepsilon > 0$, there exists a constant K dependent only on f(X), μ and ε such that

 $u(P) \leq Kg(Y)$

for every $P = (X, Y) \in U_0$, dis $(P, \partial U_0) > \varepsilon$.

Let $y_0 \ge 0$ be a constant and h(y) be a regularly growing function defined on $(y_0, +\infty)$. It is easily seen that h(||Y||) defined on $\{Y \in \mathbb{R}^n | ||Y|| > y_0\}$ grows regularly. If we put $U_1 = \mathbb{R}^m$, $U_2 = \{Y \in \mathbb{R}^n | ||Y|| > y_0\}$, g(Y) = h(||Y||) and $\varepsilon = 1$ in Theorem 1, we immediately have

THEOREM 2. Let f(X) be a non-negative measurable function on R^m satisfying (1) and h(y) be a regularly gorwing function on $(y_0, +\infty)$, where $y_0 \ge 0$ is a constant. Suppose that u(X, Y) is a subharmonic function on $R^m \times R^n$ such that

$$u(X, Y) \leq f(X)h(||Y||)$$

for any $(X, Y) \in \mathbb{R}^m \times \mathbb{R}^n$, $||Y|| > y_0$. Then, there exists a constant K dependent only on f(X) and μ such that

$$u(X,Y) \leq Kh(||Y||)$$

for every $(X, Y) \in \mathbb{R}^m \times \mathbb{R}^n$, $||Y|| > y_0 + 1$.

REMARK. If a function h(y) on $(y_0, +\infty)$ grows regularly, there are two positive constants A and B such that

$$h(y) \leq A e^{By} \qquad (y > y_0).$$

In fact, let y, $y > y_0$, be any number and take a non-negative integer n satisfying

$$n \leq y - y_0 < n + 1.$$

Then

$$h(y) \leq \mu h(y_0 + n) \leq \mu^n h(y_0 + 1) \leq \mu^{(y-y_0)} h(y_0 + 1) = A e^{By},$$

where

$$A = \mu^{-y_0} h(y_0 + 1), \qquad B = \log \mu.$$

It follows from Remark that h(y) in Theorem 2 must satisfy the growth condition

(2)
$$h(y) = O(e^{By}) \qquad (y \to +\infty)$$

for some constant B > 0. The following Theorem 3 is a generalization of Ohtsuka's [6], which shows that (2) is almost sharp.

THEOREM 3. For any $\varepsilon > 0$, there exist a subharmonic function $u_{\varepsilon}(X, Y)$ on $\mathbb{R}^m \times \mathbb{R}^n$ satisfying

(3)
$$\sup_{R^m \times R^n} u_{\varepsilon}(X, Y) \exp(-||Y||^{1+\varepsilon}) = +\infty$$

and a non-negative measurable function f(X) on R^m satisfying (1) such that

(4)
$$u_{\varepsilon}(X,Y) \leq f_{\varepsilon}(X) \exp(||Y||^{1+\varepsilon}) \quad on \ R^{m} \times R^{n}.$$

H. YOSHIDA

QUESTION 1. The function $h(y) = \exp(y^{1+\epsilon})$ does not satisfy (2). So we ask: Is Theorem 2 still true, even if the regular growth condition of h(y) is replaced by the weaker condition (2)?

The following Theorem 4 shows that the exponent -(m-1)/m in (1) is best possible in Theorems 1 and 2. Our example is essentially a multi-dimensional variant of Domar's [5, Theorem 5].

THEOREM 4. There exist a subharmonic function u(X, Y) on $\mathbb{R}^m \times \mathbb{R}^n$, a non-negative measurable function f(X) on \mathbb{R}^m satisfying

(5)
$$\int_0^1 \xi^{-1} \log^+ F_f(\xi) d\xi < +\infty$$

for any l < (m-1)/m, and a regularly growing function h(y) on $(0, +\infty)$ such that

(6)
$$u(X, Y) \leq f(X)h(||Y||) \quad on \ R^m \times (R^n - \{0\})$$

and

(7)
$$\sup_{R^{m}\times (R^{n}-\{0\})} u(X, Y)h(||Y||)^{-1} = +\infty.$$

QUESTION 2. The non-negative measurable function f(X) on \mathbb{R}^m which we shall give to prove Theorem 4 has the property

$$K_1\xi^{-1/m} \leq \log^+ F_f(\xi) \leq K_2\xi^{-1/m}$$

for sufficiently small $\varepsilon > 0$, where K_1 and K_2 are two positive constants. So, H. Aikawa asks: Is it possible to find a subharmonic function u(X, Y) on $\mathbb{R}^m \times \mathbb{R}^n$, a non-negative measurable function f(X) on \mathbb{R}^m satisfying

(8)
$$\log^+ F_f(\xi) = o(\xi^{-1/m}) \qquad (\xi \to 0)$$

and a regularly growing function h(y) on $(0, +\infty)$ such that (6) and (7) are satisfied? If this question is negatively answered, we have an interesting result that (1) is replaced by (8) in Theorem 2.

3. Extended Phragmén-Lindelöf theorems

By R^+ , we denote the set of all positive real numbers. Let G be a domain in R^k ($k \ge 2$). When a function u(P) on G is given, we say that u(P) satisfies the Phragmén-Lindelöf boundary condition on ∂G , if

$$\lim_{P\in G, P\to Q} u(P) \leq 0$$

for every $Q \in \partial G$. When two domains G_1 and G_2 ,

$$G_1 \subset \mathbb{R}^m \quad (m \ge 1), \qquad G_2 \subset \mathbb{R}^n \quad (n \ge 1),$$

and a function u(X, Y) on $G_1 \times G_2$ are given, the maximum modulus M(u, y) of u(X, Y) is defined by

$$M(u, y) = \sup_{(X, Y) \in G_1 \times G_2, \|Y\| = y} u(X, Y) \qquad (y > 0).$$

Hardy and Rogosinski [6, Theorem 3] proved:

THEOREM HR. Let I be an open interval (α, β) and u(z) be a subharmonic function on the half-strip

$$\Lambda = \{ z = X + iY \mid X \in I, Y \in R^+ \}$$

such that u(z) satisfies the Phragmén-Lindelöf boundary condition on $\partial \Lambda$ and

$$\lim_{y\to\infty} M(u, y) \exp\{-(\beta - \alpha)^{-1} \pi y\} \leq 0.$$

Then

$$u(z) \leq 0$$
 $(z \in \Lambda)$.

Deny and Lelong [3, Théorème 2], [4, Théorème 2] generalized Theorem HR to a function defined on a half-cylinder in the Euclidean space of higher dimension. In the following, a bounded domain in R^m having sufficiently smooth boundary (if m = 1, an open interval) is called a *bounded regular domain*. For a given bounded regular domain D, let $\lambda_D > 0$ be the first eigenvalue of the boundary value problem with respect to D:

$$\Delta f + \lambda_D f = 0$$
 on D , $f = 0$ on ∂D ,

where Δ denotes the Laplace operator (if m = 1, $\Delta = d^2/dx^2$). If D is an interval (α, β) , we easily see

$$\sqrt{\lambda_D} = (\beta - \alpha)^{-1} \pi.$$

THEOREM DL. Let D be a bounded regular domain in R^m $(m \ge 1)$ and u(P) be a subharmonic function on $\Gamma = D \times R^+$ such that u(P) satisfies the Phragmén-Lindelöf boundary condition on $\partial \Gamma$ and

$$\overline{\lim_{y\to\infty}} M(u, y) \exp(-\sqrt{\lambda_D} y) \leq 0.$$

Then

$$u(P) \leq 0$$
 $(P \in \Gamma).$

On the other hand, Brawn [1, Theorem 1] generalized Theorem HR to a subharmonic function on the strip $(0,1) \times R^n$ in R^{n+1} $(n \ge 1)$.

THEOREM B. Let u(P) be a subharmonic function on

$$\Omega = (0,1) \times R^n \qquad (n \ge 1)$$

such that u(P) satisfies the Phragmén-Lindelöf boundary condition on $\partial \Omega$ and

$$\overline{\lim_{y\to\infty}} M(u,y) y^{(n-1)/2} \exp(-\pi y) \leq 0.$$

Then

$$u(P) \leq 0$$
 $(P \in \Omega).$

The following Theorem 5 generalizes both Theorem DL and Theorem B.

THEOREM 5. Let D be a bounded regular domain in R^m $(m \ge 1)$ and u(P) be a subharmonic function on $\Pi = D \times R^n$ $(n \ge 1)$ such that u(P) satisfies the Phragmén-Lindelöf boundary condition on $\partial \Pi$ and

$$\overline{\lim_{y\to\infty}} M(u,y) y^{(n-1)/2} \exp(-\sqrt{\lambda_D} y) \leq 0.$$

Then

$$u(P) \leq 0 \qquad (P \in \Pi).$$

We now state the main result in this paper which further sharpens Theorem 5. It is the result based on Theorems 2 and 5.

THEOREM 6. Let D be a bounded regular domain in \mathbb{R}^m $(m \ge 1)$ and u(X, Y)be a subharmonic function on $\Pi = D \times \mathbb{R}^n$ $(n \ge 1)$ satisfying the Phragmén-Lindelöf boundary condition on $\partial \Pi$. Suppose that for a non-negative measurable function f(X) on \mathbb{R}^m satisfying (1)

$$u(X, Y) \leq \varepsilon(||y||) f(X) ||Y||^{(1-n)/2} \exp(\sqrt{\lambda_D} ||Y||) \quad on \ D \times (R^n - \{0\})$$

where $\varepsilon(t)$ is a function on R^+ decreasing to 0 as $t \to +\infty$. Then

$$u(X,Y) \leq 0$$
 on Π .

The following Theorem 7 shows that the exponent -(m-1)/m in (1) is best possible in Theorem 6.

THEOREM 7. Let

$$D_0 = \{ X \in \mathbb{R}^m \mid ||X|| < 2^{-1} \pi \} \qquad (m \ge 1).$$

Then there exist an unbounded subharmonic function u(X, Y) on $\Pi_0 = D_0 \times R^n$ ($n \ge 1$) satisfying the Phragmén-Lindelöf boundary condition on $\partial \Pi_0$, a function $\varepsilon(t)$ on R^+ decreasing to 0 as $t \to +\infty$ and a non-negative measurable function f(X) on R^m satisfying (5) for any l < (m-1)/m, such that

(9)
$$u(X, Y) \leq \varepsilon(||Y||) f(X) ||Y||^{(1-n)/2} \exp(\sqrt{\lambda_{D_0}} ||Y||) \quad on \ D_0 \times (R^n - \{0\}).$$

The proofs of Theorems 5, 6 and 7 will be given in Section 5.

4. Proofs of Theorems 1, 3 and 4

PROOF OF THEOREM 1. (This is the proof suggested by a referee.) Let $\mu, \mu \ge 1$, be a constant such that

$$g(Y) \leq \mu g(Y_0)$$

for any $Y_0 \in U_2$ and any $Y \in C_n(Y_0, 1) \cap U_2$. Take any ε , $0 < \varepsilon < 2$, and any point $P_0 = (X_0, Y_0) \in U_0$, dis $(P_0, \partial U_0) > \varepsilon$. From (10) we have

 $u(P) \leq \mu g(Y_0) f(X)$

for any $P = (X, Y) \in C_{m+n}(P_0, 1) \cap U_0$. Consider the subharmonic function $u(P) \{\mu g(Y_0)\}^{-1}$ on the set

$$\Phi(P_0) = \{ P = (X, Y) \in U_0 | || X - X_0 || < \varepsilon / \sqrt{8}, |y_i - y_i^0| < \varepsilon / \sqrt{8n} (i = 1, 2, ..., n) \}$$

where $Y = (y_1, y_2, ..., y_n)$ and $Y_0 = (y_1^0, y_2^0, ..., y_n^0)$. If we apply Domar's result stated in Section 1, we obtain a constant K^* independent of P_0 and u(X, Y) such that

$$u(P) \leq K^* \mu g(Y_0)$$

for every $P \in \Phi(P_0)$ and hence

$$u(P_0) \leq K^* \mu g(Y_0).$$

Putting $K = K^* \mu$, we finally have that

$$u(P) \leq Kg(Y)$$

for every $P = (X, Y) \in U_0$, dis $(P, \partial U_0) > \varepsilon$.

PROOF OF THEOREM 3. Given any $\varepsilon > 0$, consider $u_{\varepsilon}^*(X, Y)$ on $\mathbb{R}^m \times \mathbb{R}^n$ defined by

$$u_{\epsilon}^{*}(X,Y) = \begin{cases} \|Y\|^{\epsilon} (\cos \|X\|) \exp(\|Y\|^{1+\epsilon} - \|X\|^{2} \|Y\|^{\epsilon}) \\ & on \{(X,Y)|X \in \mathbb{R}^{m}, \|X\| < 2^{-1}\pi, Y \in \mathbb{R}^{n} \} \\ 0 & \text{elsewhere.} \end{cases}$$

If we write ||X|| = x, ||Y|| = y and

$$g(x, y) = \exp(y^{1+\varepsilon} - x^2 y^{\varepsilon})$$

for simplicity, we have

$$\Delta u_{\varepsilon}^{*} = \frac{\partial^{2} u_{\varepsilon}^{*}}{\partial x^{2}} + \frac{m-1}{x} \frac{\partial u_{\varepsilon}^{*}}{\partial x} + \frac{n-1}{y} \frac{\partial u_{\varepsilon}^{*}}{\partial y} + \frac{\partial^{2} u_{\varepsilon}^{*}}{\partial y^{2}}$$

$$\geq g(x, y) [y^{3\varepsilon} \{(1+\varepsilon)^{2} - o(1)\} \cos x + y^{2\varepsilon} \{4 - x^{-2}(m-1)y^{-\varepsilon}\}] x \sin x$$

$$\geq \begin{cases} g(x, y) [y^{3\varepsilon} \{(1+\varepsilon)^{2} - o(1)\} \cos x + y^{2\varepsilon} \{2^{-1}\sqrt{2} - o(1)\}] \\ (4^{-1}\pi \leq x \leq 2^{-1}\pi, y \to +\infty) \end{cases}$$

$$g(x, y) y^{3\varepsilon} \{2^{-1}\sqrt{2}(1+\varepsilon)^{2} - o(1) - (m-1)y^{-2\varepsilon}x^{-1}\sin x\}$$

$$\geq g(x, y) y^{3\varepsilon} \{2^{-1}\sqrt{2}(1+\varepsilon)^{2} - o(1)\} (0 < x \leq 4^{-1}\pi, y \to +\infty)$$

by an elementary computation. This shows that $u^*(X, Y)$ is subharmonic on $R^m \times \{Y \in R^n | || Y || > a\}$ for a sufficiently large a.

Choose a constant M_{ϵ} so that

$$u_{\epsilon}^*(X,Y) \leq M_{\epsilon}$$

on $R^m \times \{Y \in R^n \mid ||Y|| < 2a\}$. Define

$$u_{\varepsilon}(X, Y) = \max\{u_{\varepsilon}^{*}(X, Y), M_{\varepsilon}\} \quad \text{on } R^{m} \times R^{m}$$

and note that u_{ϵ} is subharmonic on $R^m \times R^n$. Put

(11)
$$f_{\varepsilon}(X) = \max\{||X||^{-2}, M_{\varepsilon}\} \quad \text{on } R^{m}.$$

Since

$$F_{f_{\varepsilon}}(\xi) = (A_m \xi^{-1})^{2/m} \qquad (\xi < A_m M_{\varepsilon}^{-m/2}),$$

 $f_{\epsilon}(X)$ satisfies (1). We observe (3), because

$$u_{\varepsilon}(0, Y)\exp(-y^{1+\varepsilon}) \rightarrow +\infty$$
 as $y \rightarrow +\infty$.

We next see that

$$\exp(x^2y^{\epsilon}) > x^2y^{\epsilon}$$
 on $R^+ \times R^+$

and hence

$$x^{-2} > y^{\epsilon} \exp(-x^2 y^{\epsilon})$$
 on $R^+ \times R^+$.

From this fact and (11), (4) follows immediately.

PROOF OF THEOREM 4. Put

$$v(X, Y) = \exp(e^{\|Y\|} \cos \|X\|) \cos(e^{\|Y\|} \sin \|X\|)$$
 on $R^m \times R^n$

and consider

$$u^{*}(X, Y) = \{v(X, Y)\}^{2m}$$
.

If we write ||X|| = x and ||Y|| = y, we have

$$\Delta u^* = 2mv^{2m-2} \left[(2m-1) \left\{ \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right\} + v \Delta v \right]$$
$$= 2mv^{2m-2} \exp(y + 2e^y \cos x) q(x, y)$$

where

q(x, y) =

$$(2m-1)e^{y}+\cos(e^{y}\sin x)\left\{\frac{n-1}{y}\cos(x+e^{y}\sin x)-\frac{m-1}{x}\sin(x+e^{y}\sin x)\right\}$$

Since

$$\sin(x + e^{y} \sin x) \leq x + e^{y} \sin x \leq x(1 + e^{y}) \qquad (0 < x < 2^{-1}\pi),$$

we see that

$$q(x, y) \ge me^{y} - (m-1) - (n-1)y^{-1}$$

if $0 < x < 2^{-1}\pi$, $e^y \sin x < 2^{-1}\pi$. Hence, for a sufficiently large y_0 , $y_0 > \log(2^{-1}\pi)$, we have

$$\Delta u^* \ge 0$$

on the set

$$S = \{(X, Y) \in \mathbb{R}^m \times \mathbb{R}^n \mid ||X|| < \pi/2, e^{||Y||} \sin ||X|| < \pi/2, ||Y|| > y_0\}.$$

Let

$$D_0 = \{X \in R^m \mid ||X|| < \pi/2\}$$

Choose a positive constant M such that

$$u^*(X,Y) \leq M$$

Isr. J. Math.

on $D_0 \times \{Y \in \mathbb{R}^n \mid ||Y|| < 2y_0\}$ and define a subharmonic function u(X, Y) on $\mathbb{R}^m \times \mathbb{R}^n$ by

$$u(X, Y) = \begin{cases} M^{-1} \max\{u^*(X, Y), M\} & \text{on } S, \\ 1 & \text{elsewhere.} \end{cases}$$

We define f(X) on R^m by

(12)
$$f(X) = \sup_{Y \in \mathbb{R}^n} u(X, Y)$$

and h(y) on R^+ by

 $h(y) \equiv 1.$

It is evident that h(y) is a regularly growing function on R^+ and (6) holds. Since

 $u(0, Y) = M^{-1} \exp(2me^{||Y||})$

at any $Y \in \mathbb{R}^n$ having sufficiently large ||Y||, we have (7).

Finally, we shall show that (5) holds for any l, l < (m-1)/m. Put

$$v^*(x, y) = \exp(e^y \cos x) \cos(e^y \sin x)$$

for $x \in R$ and $y \in R$, $y > y_0$. Then, for any fixed y, $v^*(x, y)$ increases from 0 to $\exp(e^y)$ as x decreases from $\sin^{-1}(2^{-1}\pi e^{-y})$ to 0. This fact gives that

$$u(X,Y) > M^{-1}t^{2m}$$

on the domain surrounded by the set

$$\{(X, Y) \in S \mid v(X, Y) = t\}$$

for a sufficiently large t. For a given t, consider the curve

$$L = \{(x, y) \in \mathbb{R}^2 \mid v^*(x, y) = t, 0 \le x < \pi/2\}$$

in the plane and put

$$x^* = \max_{(x,y)\in L} x.$$

Since

$$\frac{dy}{dx} = \tan(x + e^y \sin x)$$

along L, we have

$$x^* + e^{y^*} \sin x^* = \pi/2, \qquad (x^*, y^*) \in L.$$

Vol. 54, 1986

Hence, x^* satisfies

$$\sin x^* \exp\{(2^{-1}\pi - x^*) \cot x^*\} = t.$$

Since

$$|S_f(M^{-1}t^{2m})| = A_m x^{*^n}$$

from (12), we have

$$F_f(\xi) = M^{-1} [\sin\{(A_m^{-1}\xi)^{1/m}\}]^{2m} \exp[2m\{2^{-1}\pi - (A_m^{-1}\xi)^{1/m}\} \cot\{(A_m^{-1}\xi)^{1/m}\}].$$

Thus, for a sufficiently small $\varepsilon > 0$,

$$K_1\xi^{-1/m} \leq \log F_f(\xi) \leq K_2\xi^{-1/m}$$

where K_1 and K_2 are two positive constants. This gives (5) for any l < (m-1)/m.

5. Proofs of Theorems 5, 6 and 7

PROOF OF THEOREM 5. This proof is based on both methods used to prove Theorem DL and Theorem B. For a given bounded regular domain D, we denote the positive eigenfunction corresponding to the eigenvalue λ_D by $f_D(X)$.

Define $h_D(X, Y)$ on Π by

$$h_D(X, Y) = f_D(X) \| Y \|^{1-n/2} I_{n/2-1}(\sqrt{\lambda_D} \| Y \|),$$

where $I_{n/2-1}(y)$ is the Bessel function of the third kind, of order n/2-1 (see e.g. Watson [8, p. 77]). It is easy to see that $h_D(X, Y)$ is harmonic on Π . We also remark that

$$I_{n/2-1}(y) = (2\pi y)^{-1/2} e^{y} (1 + o(1)) \qquad (y \to +\infty)$$

(see Watson [8, p. 203]).

First, consider a subharmonic function $u_1(P)$ on Π defined by

(13)
$$u_1(P) = u(P) - \eta_1 h_D(P)$$
 $(\eta_1 > 0)$

Take a closed ball $B \subset D$ and choose a positive constant ε_1 such that

$$f_D(X) \ge \varepsilon_1$$
 on B .

If we choose a positive constant y_1 such that

$$M(u, y) < 2^{-1} \varepsilon_1 \eta_1 C_D y^{(1-n)/2} \exp(\sqrt{\lambda_D} y) \qquad (y \ge y_1)$$

where

$$C_D = (2\pi\sqrt{\lambda_D})^{-1/2},$$

we see that

$$u_1(P) \leq \varepsilon_1 \eta_1 C_D \{ -2^{-1} - o(1) \} \| Y \|^{(1-n)/2} \exp(\sqrt{\lambda_D} \| Y \|)$$

for any P = (X, Y), $X \in B$, $||Y|| \ge y_1$. Hence, there are a value M and a point $P_0 \in B \times R^n$ such that

(14)
$$u_1(P_0) = M$$
 and $u_1(P) \leq M$ on $B \times R^n$.

Next, by using the properties of monotonicity and continuity of the eigenvalues (e.g. see Courant and Hilbert [2, Theorem 3 on p. 409 and Theorem 10 on p. 421]), take a bounded regular domain D^* , $D^* \subset R^m$ such that

$$(D-B) \cup \partial (D-B) \subset D^*$$
 and $\lambda_D < \lambda_{D^*} < \lambda_{D^{-B^*}}$

Consider a subharmonic function $u_2(P)$ on $(D-B) \times R^n$ defined by

(15)
$$u_2(P) = u_1(P) - \eta_2 h_D \cdot (P) \qquad (\eta_2 > 0)$$

If we take a positive number ε_2 such that

$$f_{D^*}(X) \ge \varepsilon_2$$
 on $(D-B) \cup \partial (D-B)$

and a number y_2 such that

$$M(u, y) < \varepsilon_2 \eta_2 C_D \cdot y^{(1-n)/2} \exp(\sqrt{\lambda_D} y) \qquad (y \ge y_2),$$

we have that

$$u_2(P) \leq u(P) - \eta_2 h_D \cdot (P)$$

$$\leq \varepsilon_2 \eta_2 C_D \cdot ||Y||^{(1-n)/2} [\exp\{(\sqrt{\lambda_D} - \sqrt{\lambda_D} \cdot)||Y||\} - (1+o(1))]$$

for any $P = (X, Y) \in (D - B) \times R^n$, $||Y|| \ge y_2$. Hence, with (14) the maximal principle gives that

$$u_2(P) \leq \max(0, M)$$
 on $(D-B) \times R^n$.

We also have that

$$u_1(P) \leq \max(0, M)$$
 on $(D-B) \times R^n$,

because η_2 is chosen arbitrarily small in (15). Further, we have from (14) that

$$u_1(P) \leq \max(0, M)$$
 on $D \times R^n$.

The maximal principle and (14) give that $M \leq 0$ and hence

$$u_1(P) \leq 0$$
 on $D \times R^n$.

Letting $\eta_1 \rightarrow 0$ in (13), we conclude that

$$u(P) \leq 0 \qquad \text{on } D \times R^n.$$

PROOF OF THEOREM 6. For each positive integer m, take a number t_m such that

$$\varepsilon(t) \leq 1/m$$
 $(t \geq t_m).$

Then

$$u(X, Y) \leq f(X) \{ m^{-1} \| Y \|^{(1-n)/2} \exp(\sqrt{\lambda_D} \| Y \|) \}$$

at every $(X, Y) \in D \times \{Y \in \mathbb{R}^n \mid ||Y|| \ge t_m\}$. If we put

$$h_m(y) = m^{-1} y^{(1-n)/2} \exp(\sqrt{\lambda_D} y),$$

we easily see that

$$h_m(y+1) \leq h_m(y) \exp(\sqrt{\lambda_D} y)$$
 $(y > t_m).$

Hence, if we also put u(X, Y) = 0 on $\mathbb{R}^m \times \mathbb{R}^n - \Pi$ and apply Theorem 2, we can find a constant K independent of m such that

$$u(X, Y) \leq Kh_m(||Y||) = Km^{-1}||Y||^{(1-n)/2} \exp(\sqrt{\lambda_D}||Y||)$$

for every $(X, Y) \in D \times \{Y \in \mathbb{R}^n \mid ||Y|| > t_m + 1\}$. This gives that

$$\overline{\lim_{y\to\infty}} M(u,y) y^{(n-1)/2} \exp(-\sqrt{\lambda_D} y) \leq 0.$$

The conclusion follows from Theorem 5.

PROOF OF THEOREM 7. For the subharmonic function u(X, Y) taken in the proof of Theorem 4, consider a function

$$u(X, Y) - 1 \qquad \text{on } \Pi_0 = D_0 \times R^n.$$

Representing this function by u(X, Y) again, we easily see that it satisfies the Phragmén-Lindelöf boundary condition on $\partial \Pi_0$. Define f(X) on \mathbb{R}^m by

$$f(X) = \begin{cases} \sup_{Y \in \mathbb{R}^n} u(X, Y) & \text{on } D_0, \\ 0 & \text{elsewhere.} \end{cases}$$

H. YOSHIDA

Then we can show (5) for any l < (m-1)/m as in the proof of Theorem 4. If we define $\varepsilon(t)$ on R^+ by

$$\varepsilon(t) = t^{(n-1)/2} \exp(-\sqrt{\lambda_{D_0}} t),$$

we evidently obtain that (9) holds for these f(X) and $\varepsilon(t)$.

References

1. F. F. Brawn, Mean value and Phragmén-Lindelöf theorems for subharmonic functions in strips, J. London Math. Soc. (2)3(1971), 689-698.

2. R. Courant and D. Hilbert, *Methods of Mathematical Physics*, Vol. 1, Interscience, New York, 1935.

3. J. Deny and P. Lelong, Étude des fonctions sousharmoniques dans un cylindre ou dans un cône, Bull. Soc. Math. France 75(1947), 89-112.

4. J. Deny and P. Lelong, Sur une généralisation de l'indicatrice de Phragmén-Lindelöf, C. R. Acad. Sci. Paris 224(1947), 1046-1048.

5. Y. Domar, On the existence of a largest subharmonic minorant of a given function, Ark. Mat. 3(1957), 429-440.

6. G. Hardy and W. Rogosinski, *Theorems concerning functions subharmonic in a strip*, Proc. Roy. Soc. London, Ser. A 185(1946), 1-14.

7. W. K. Hayman, Research Problems in Function Theory, Athlone Press, London, 1967.

8. M. Ohtsuka, An example related to boundedness of subharmonic functions, Ann. Polon. Math. 42(1982), 261-263.

9. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1922.

10. F. Wolf, An extension of the Phragmén-Lindelöf theorem, J. London Math. Soc. 14(1939), 208-216.

11. H. Yoshida, A boundedness criterion for subharmonic functions, J. London Math. Soc. (2)24(1981), 148-160.