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A B S T R A C T  

Given two kinds of functions f(X) and h(y)  defined on the m-dimensional 
Euclidean space R ~ (m => 1) and the set of positive real numbers respectively, 
we give an estimation of growth of subharmonic functions u(P) defined on 
R . . . .  (n _>- 1) such that 

. (t,) <= f(X)h (11 Y II) 

for any P = (X, Y), X E R ' ,  Y E R", where ]l YI[ denotes the usual norm of Y. 
Using an obtained result, we give a sharpened form of an ordinary 
Phragm6n-Lindel6f theorem with respect to the generalized cylinder D × R", 
with a bounded domain D in Rm. 

1. Introduction 

Let X = (x l ,x2  . . . . .  xk)  denote a point in the k-dimensional Euclidean space 

R k (k _-> 1) and Ilxll denote the norm of X 

Ilxll= + ÷ . , . +  

The k-dimensional Lebesgue measure of a set S in R k is denoted by I S I. With a 

non-negative measurable function f ( X )  defined on R " (m => 1), we associate a 

non-increasing function rt = Fr(~) on the interval (0, + ~) such that for every 

t > 0 the m-dimensional measure I Sr(t) l  of the set 

St( t  ) = { X  E R " I f (X)  => t} 

is equal to the one-dimensional Lebesgue measure of the set 

{sol0< ~:< + 0% Ft(¢)_->/}. 
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Such a function Fr(~) is obtained by considering the inverse function of 

= ISr(71)l and is uniquely determined except on a countable set. 

Domar [5, Theorem 3] proved the following fact: 

Let U, be an open set in R ~" and denote the bounded set 

{Y = (y, . . . . .  y . ) E  R", a, < y, < b, (i = 1,2 . . . . .  n)} 

by F, where a, and b, are constants satisfying a~ < b~ (i = 1,2 . . . . .  n). Let f ( X )  be a 

non-negative measurable function on R " satisfying 

f' 
(1) , ~ ' '  " / " l o g  + F,(~)d~ < + 

and u(X, Y)  be a subharmonic function on 

E = u , ×  m+° ] x c  u , ,  

such that 

Then 

u(X, Y ) ~  f ( X )  onE. 

u(X, Y ) ~  K 

on any subset orE which is situated at a distance 6 from the boundary orE, where 

K is a constant depending only on f (X ) ,  ,5 and b~- a, (i = 1,2 . . . . .  n). 

A similar theorem was proved in Yoshida [11] in terms of spherical coordi- 

nates and applied to answer a question raised by Hayman [7; 3.6]. 

In the present paper, we first give a result extending Domar's result in the 

sense that 

(i) in place of F, any open set U2 (/_/2 C R" )  can be taken, 
(ii) given a non-negative measurable function f ( X )  on R ~" satisfying (1) and a 

certain function g ( Y )  defined on U2, a subharmonic function u(X, Y )  domi- 

nated by f ( X ) g ( Y )  on Uo = Uj × U2 is also dominated by K g ( Y )  with a constant 

K independent of u(X, Y), on any subset of U0 located at a positive distance 

from the boundary of U0. 

In connection with the growth property of g(Y) ,  we consider the special case 

where R r", { Y E R  ° 111YII > y0} (yo=>0 is a constant) and a function free from 

rotation are taken as U1, U2 and g(Y) ,  respectively. 

We next prove an ordinary Phragm6n-Lindel6f theorem generalized in a 

satisfactory form, which extends a result of Deny and Lelong ([3, Th6or~me 2] 

and also [4, Th6or~me 2]) and a result of Brawn [1, Theorem 1]. 
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Using the results thus obtained, we finally give a type of Phragm6n-Lindel6f 

theorem which is different from the ordinary type and falls under the same 
category as a result in Wolf [10, Lemma] and a result in Yoshida [11, Corollary 

3]. 
I wish to thank Professor M. Ohtsuka for his continuous advice and a referee 

for his valuable suggestions. 

2. Statements of fundamental results 

The proofs of all theorems in this section will be given in Section 4. The 

boundary of a set S in R k and the distance between two sets St and $2 in R ~ are 

denoted by 0S and dis(St, $2), respectively. We denote the k-dimensional closed 

ball having a center P E R k and a radius r by Ck(P,r). Let U be an open set in 

R k (k _-> 1). A function ~b(P) defined on U and satisfying 

inf qJ (P) > 0 
P ~ U  

is said to grow regularly, if there is a constant /t ~ 1 such that 

~,(P) < tt~J(Po) 

for every Po E U and every P ~ C~ (Po, 1) n U. 
The following result is obtained from Domar's result stated in Section 1. 

THEOREM 1. Let U1 and U2 be open sets in R m (m >= 1) and R" (n >- 1), 

respectively. Let f (X )  be a non-negative measurable function on R " satisfying (1) 

and g(Y)  be a regularly growing function on U2. Suppose that u(P) is a 

subharmonic function on Uo = U1 x U2 such that 

u(P)<=f(X)g(Y) 

for any P = (X, Y) E Uo. Then, for any e > 0, there exists a constant K dependent 

only on f(X),  /z and e such that 

u(P)<=Kg(Y) 

for every P = (X, Y ) E  Uo, dis(P, 0Uo)> e. 

Let yo --> 0 be a constant and h (y) be a regularly growing function defined on 

(yo, +oo). It is easily seen that h(llYII) defined on { Y E R "  [ll Yll> yo} grows 

regularly. If we put U1 = R " ,  U~ = { r  E R" [[1 gll > yo}, g(Y)  = h(ll g[t) and 
e = 1 in Theorem 1, we immediately have 
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THEOREM 2. Let f ( X )  be a non-negative measurable function on R m satisfy- 

ing (1) and h(y)  be a regularly gorwing function on (yo, + ~), where yo--> 0 is a 

constant. Suppose that u (X, Y)  is a subharmonic function on R m × R" such that 

u (X, Y)  <= f ( X ) h  (11 Y II) 

for any (X, Y) E R " × R ", II Y II > y,,. Then, there exists a constant K dependent 

only on f ( X )  and ix such that 

u(X, Y)<= gh([I YII) 

for every (X, Y)  E R m × R ", II Y II > yo + 1. 

REMARK. If a function h(y)  on (yo, + ~ )  grows regularly, there are two 

positive constants A and B such that 

h(y)<= Ae  °y (y > yo). 

In fact, let y, y > yo, be any number and take a non-negative integer n satisfying 

n = < y - y o < n + l .  

Then 

h ( y ) =  < Ixh(yo + n ) =  Ixnh(yo + 1)~ Ix'r-Y°~h (yo + 1) = Ae By, 

where 

A = Ix-Y~h(yo+ 1), B = logix. 

It follows from Remark that h(y)  in Theorem 2 must satisfy the growth 

condition 

(2) h ( y ) =  O(e By) (y---~ + ~ )  

for some constant B > 0. The following Theorem 3 is a generalization of 

Ohtsuka's [6], which shows that (2) is almost sharp. 

THEOREM 3. For any e > O, there exist a subharmonic function u~(X, Y)  on 

R m × R" satisfying 

(3) sup u~ (X, Y)exp( - II Y II = + o~ 
R m x R  ~ 

and a non-negative measurable function f ( X )  on R m satisfying (1) such that 

(4) u~ (X, Y)_-< f~ (X)exp(Jl YII o n  R ~ x R ~. 
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QUESTION 1. The function h ( y ) =  exp(y ~+~) does not satisfy (2). So we ask: 
Is Theorem 2 still true, even if the regular growth condition of h (y) is replaced 
by the weaker condition (2)? 

The following Theorem 4 shows that the exponent - (m - 1)/m in (1) is best 
possible in Theorems 1 and 2. Our example is essentially a multi-dimensional 

variant of Domar's  [5, Theorem 5]. 

THEOREM 4. There exist a subharmonic function u(X, Y)  on Rm × R", a 

non-negative measurable function f ( X )  on R ~ satisfying 

f' 
(5) ~-' log+ Fr(iC)d~ < + ~ 

} 

for any I < (m - 1)/m, and a regularly growing function h (y) on (0, + ~) such that 

u(X, Y)<-f(X)h(llYll) onR ×(R"-{0}) (6) 

and 

(7) sup u(X, Y)h(ll YII) -'= 
R ~ ×(R " -{0})  

QUESTION 2. The non-negative measurable function f ( X )  on R " which we 
shall give to prove Theorem 4 has the property 

K , U " "  <= log+Ft(~)- <- K2U"" 

for sufficiently small e > 0, where K, and K2 are two positive constants. So, H. 

Aikawa asks: Is it possible to find a subharmonic function u(X, Y)  on R m x R", a 

non-negative measurable function f ( X )  on R ~ satisfying 

(8) log+Fr (s ~) = o ( U  ''~ ) (~¢--) 0) 

and a regularly growing function h(y)  on (0, +o,) such that (6) and (7) are 

satisfied? If this question is negatively answered, we have an interesting result 

that (1) is replaced by (8) in Theorem 2. 

3. Extended Phragm6n-Lindel6f theorems 

By R +, we denote the set of all positive real numbers. Let G be a domain in 

R k (k >_-2). When a function u(P) on G is given, we say that u(P) satisfies the 

Phragmdn-Lindel6[ boundary condition on OG, if 

li---~ u(P)_-<0 
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for every O E OG. When two domains G, and G2, 

G,.CR m (m >-_ l), G2CR" (n >- l), 

and a function u(X, Y) on G, x G2 are given, the maximum modulus M(u ,y )  of 

u(X, Y) is defined by 

M(u ,y)  = sup u(X, Y) (y >0).  
(X, Y)CGIXG2,[[Y][=y 

Hardy and Rogosinski [6, Theorem 3] proved: 

THEOREM HR. Let I be an open interval (a,/3) and u(z) be a subharmonic 
function on the half-strip 

A = { z  = X + i Y [ X E I ,  Y ~ R  +} 

such that u (z ) satisfies the Phragmdn-Lindelfif boundary condition on 8 A and 

Then 

lim M(u, y)exp{ - (/3 - a ) - '  zry} _-< O. 
y ~  

u(z)~O (z CA). 

Deny and Lelong [3, Th6or6me 2], [4, Th6or6me 2] generalized Theorem H R  

to a function defined on a half-cylinder in the Euclidean space of higher 

dimension. In the following, a bounded domain in R '~ having sufficiently smooth 

boundary (if m = 1, an open interval) is called a bounded regular domain. For a 
given bounded regular domain D, let hD > 0 be the first eigenvalue of the 

boundary value problem with respect to D:  

A f + A D f = 0  onD,  f = 0  onSD, 

where A denotes the Laplace operator (if m = 1, A = d2/dx"). If D is an interval 

(a,/3), we easily see 

= ( /3  - , ~ ) - ' ~ .  

THEOREM DL. Let D be a bounded regular domain in R"  (m >= 1) and u(P) 

be a subharmonic function on F = D  ×R + such that u(P) satisfies the 
Phragmdn-Lindel6f boundary condition on a F and 

li--m M(u, y)exp( - X/~Dy) ~ 0. 
y ~  
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Then 
u(P)<=O (Per). 

On the other hand, Brawn [1, Theorem 1] generalized Theorem H R  to a 

subharmonic function on the strip (O, 1)x R" in R "+~ (n >= 1). 

THEOREM B. Let u (P)  be a subharmonic function on 

~ = ( 0 , 1 ) ×  R ° (n->_l) 

such that u (P) satisfies the Phragmdn-Lindel6f  boundary condition on O ~ and 

Then 

lim M(u, y)y("-"/2exp(-  try) _-< 0. 
y ~  

a subharmonic function on H = D x R"  (n >-_ 1) such 

Phragmdn-Lindel6f  boundary condition on OH and 

u(P)<=O ( P E I ] ) .  

The following Theorem 5 generalizes both Theorem DL and Theorem B. 

THEOREM 5. Let D be a bounded regular domain in R m (m >= 1) and u (P) be 

that u (P)  satisfies the 

Then 

lim M(u, y)yt"-')/2exp( - ~ D y )  < 0. 

u(P)<-_O (P EH) .  

We now state the main result in this paper which further sharpens Theorem 5. 

It is the result based on Theorems 2 and 5. 

THEOREM 6. Let D be a bounded regular domain in R m (m >= 1) and u (X, Y) 

be a subharmonic function on H = D × R"  (n >= l) satisfying the 

Phragmdn-LindelSf  boundary condition on 8FI. Suppose that for a non-negative 

measurable function f ( X )  on R m satisfying (1) 

u(X,  r)<-_ e(llyll)f(X)ll r l l  ° ")'2exp(X/~oll YII) o n D  x (R ° -{0}) 

where e( t )  is a function on R + decreasing to 0 as t--~ +~.  Then 

u (X, Y) <= 0 on II. 

The following Theorem 7 shows that the exponent - (m - 1)/m in (1) is best 

possible in Theorem 6. 
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THEOREM 7. Let 

D o = { X E R m l I I X I I < Z - ' c r }  (m = 1). 

Then there exist an unbounded subharmonic [unction u (X, Y)  on IIo = Do x R" 

(n => 1) satis[ying the Phmgmdn-Lindel6[  boundary condition on 0llo, a [unction 

e( t )  on R + decreasing to 0 as t--* + oo and a non-negative measurable [unction 

[ ( X )  on R r, satisfying (5) for any l < (m - 1)/m, such that 

( I  n ) / 2  n (9) u(X,Y)<--e( l lYII)[(X)f tYII  exp(X/~D,,tIYII) o n D , , x ( R - { 0 } ) .  

The proofs of Theorems 5, 6 and 7 will be given in Section 5. 

. 

PROOF OF THEOREM 1. 

be a constant such that 

(10) 

Proofs of Theorems 1, 3 and 4 

(This is the proof suggested by a referee.) Let ~,/z = 1, 

g (Y)  =< ~g(Yo) 

for any YoE Uz and any Y E C,(Y,,,1)M U2. Take any e, 0 <  e < 2, and any 

point Po = (Xo, Yo) ~ Uo, dis(Po, OUo) > e. From (10) we have 

u(P)  <- I.~g( Y, , ) f tX)  

for any P = (X, Y ) E  C,,+.(Po, 1)M Uo. Consider the subharmonic function 

u(P){~g(Yo)}- '  on the set 

• (P,j)={e = ( x ,  v ) ~  u,,lllx-xoll< I y , -  y','l < e/x/-~n(i -- 1,2 . . . . .  n)} 

where Y = ( y ~ , y 2  . . . . .  y,,) a n d  Y o = ( y ~ , y  ° . . . . .  yC~). If we apply Domar 's  result 

stated in Section 1, we obtain a constant K* independent of Po and u(X,  Y )  such 

that 

u(P)<= K*l~g(Yo) 

for every P E qb(Po) and hence 

u(Po) <-_ K * l~g( Yo). 

Putting K - - K * / I ,  we finally have that 

u(P)  <- _ K g ( Y )  

for every P = (X, Y) E Uo, dis(P, OUo) > e. 
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defined by 
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u ~(X,  Y)  = 
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Given any e > 0 ,  consider u*(X, Y) on R m× R" 

II Y II ~ ¢cos II x II)exp(ll Y II' +~ - II x II:ll Y II E ) 
on {(x, Y)lX e R ~ , l l x l l  < 2-' rr, Y e R "} 

0 elsewhere.  

If we w r i t e l l X n = x , [ [ Y H = y  and 

g(x, y)  = exp(y '+E - x2y ~) 

for  simplicity, we have 

Au*, = a :u*  + m - 1 au*, + n -____1 au*~ a:u*~ 
ox: x o~- y o y  + - o y :  

=> g (x, y)  [y 3~ {(1 + e )2 - 0 (1)}cos x + y 2~ {4 - x-2(m - 1 )y-~ }Ix sin x 

f 
g(x,y)[y3~{(l+e)2-o(1)}cosx+y2~{2 ' ~ / 2 - o ( 1 ) } ]  2-' oo) 

__> (4-~7r_-< x _- < zr, y ~  + 

g(x, y)y3* {2-'~/2(1 + e )2_ 0 ( 1 ) -  (m - 1)y-2"x- 'sin x} 

=> g(x,y)y3"{2 'w/2(1 + e) : -  o(1)} ( 0 <  x _-<4 'Tr, y--* +oo) 

by an e lementa ry  computa t ion .  This shows that u*(X, Y) is subharmonic  on 

R " x { Y E R "  t]] Y]] > a} for a sufficiently large a. 

Choose  a constant  M, so that 

u*(X,Y)<=M, 

on R "  × { Y E R "  ] t lY l l<2a} .  Define 

u~(X, Y) = max{u*(X, Y),M,} on R "  x R "  

and note  that u, is subharmonic  on R " x R".  Put 

[~ ( x )  = max{ll x I1-% M~} on R' .  (11) 

Since 
Ff~ (~)  = (Aml~-l)  2/" (~ < A,,M~"'2), 

[~(X) satisfies (1). We observe  (3), because 

u~ (0, Y)exp( - y ' + * ) ~  + oo 

We next  see that 

e x p ( x 2 y ' )  > x2y* o n R + x R  ÷ 

as y ---~,+ ~ .  
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and hence 
x - - ~ > y ' e x p ( - x 2 y  ~) o n R + x R  * 

From this fact and (11), (4) follows immediately.  

PROOF OF THEOREM 4. Put 

v (X, Y) = exp(etlVllcos [I X II)cos(d""sin II x II) 

and consider 

u *(X, Y) = {v(X, y)}2m. 

If we write IIX II = x and [I YII = Y, we have 

A u * = 2 m v ~ "  ~ ' { ( 2 m - 1 ) { ( c g v ~ 2 + ( ~ y ) 2 }  ] 

= 2my ~'" 2exp(y + 2e r cos x)q(x, y) 

o n R "  x R "  

where 

q (x ,y )  = 

- 1)e ~ + cos(e r sin x) / n - 1 (2m 
{ Y 

Since 

cos(x + e y sin x) - rex- ls in(x + e ~ s i n x ) }  

s i n ( x + e Y s i n x ) < x + e Y s i n x < x ( l + e  y) ( 0 < x < 2 - ' z r ) ,  

we see that 

q ( x , y ) =  > me ~ - ( m  - 1 ) - ( n  - 1)y-! 

if 0 < x < 2 - ~ ,  e y sin x < 2-'~r. Hence,  for a sufficiently large yo, yo > log(2-1rr), 
we have 

A u * ~ O  

on the set 

S = {(X, Y) E g " x R "  111X [1 < 7r/2, ellVll sin II X II < zr/2, II g [[ > yo}. 

Let  

Do = {X E R "  ]llxll < 

Choose a positive constant  M such that  

u*(X ,Y)<=M 



376 H. YOSHIDA Isr. J. Math. 

on Do x{Y R'lll Ell < 2yo} and define a subharmonic function u(X, Y) on 
RmxR n by 

u(X,y)={M-'max{u*(X,Y),M} on S, 

1 elsewhere. 

We define f(X) on R " by 

(12) 

and h(y)  on R + by 

[(X) = sup u(X, Y) 
y~R  n 

h ( y ) -  1. 

It is evident that h (y) is a regularly growing function on R ÷ and (6) holds. Since 

u(0, Y ) =  M -1 exp(2me IIYII) 

at any r ~ R n having sufficiently large II r JJ, we have (7). 

Finally, we shall show that (5) holds for any l, l< (m-  1)/m. Put 

v *(x, y) = exp(e y cos x)cos(e y sin x) 

for x @ R and y E R, y > yo. Then, for any fixed y, v*(x,y) increases from 0 to 

exp(e y) as x decreases from sin-l(2-17re -y) to 0. This fact gives that 

u(X, Y ) >  M-it TM 

on the domain surrounded by the set 

{(X, Y) E S I v (X, Y) = t} 

for a sufficiently large t. For a given t, consider the curve 

L = { ( x , y ) ~  R2Iv* (x ,y )=  t , 0 =  x < 1r/21 

in the plane and put 
x* = max x. 

(x,y)EL 

Since 

along L, we have 

dy = tan(x + e y sin x) 
dx 

x*+eY'sinx*=lr/2, ( x * , y * ) ~  L. 
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Hence, x* satisfies 

Since 

from (12), we have 

sin x * exp{(2-' rr - x *)cot x *} = t. 

l&(M-'t2")l= A.,x *m 

Ft (~:) = M-'lsin{(A 7) ~)'/~' }]2" exp12 m {2-' rr - (A ,.' so) ""  }cot{(A 7.' ~:)1,,, }1. 

Thus, for a sufficiently small e > 0, 

K ,s~-"  =< log F,(~) = < K2sC-" 

where K~ and K2 are two positive constants. This gives (5)for any l < (m - 1)/m. 

5. Proofs of Theorems 5, 6 and 7 

PROOF OF THEOREM 5. This proof is based on both methods used to prove 

Theorem DL and Theorem B. For a given bounded regular domain D, we 

denote the positive eigenfunction corresponding to the eigenvalue AD by fD (X). 

Define ho(X, Y) on 11 by 

ho(X, Y) = fo(X){{ Yll'-°'2L,2_,(x/-~-dl YII), 

where/, /2-t(y) is the Bessel function of the third kind, of order n/2 - 1 (see e.g. 

Watson [8, p. 77]). It is easy to see that ho(X, Y) is harmonic on 11. We also 

remark that 
/,:2-,(y) = (2¢ry)-'/2ey (1 + o(1)) (y--+ + ~) 

(see Watson [8, p. 203]). 
First, consider a subharmonic function u,(P) on 11 defined by 

(13) u,(P) = u ( P ) -  n,ho(P) (n, > 0). 

Take a closed ball B C D and choose a positive constant ez such that 

fo(X)>= e, on B. 

If we choose a positive constant y, such that 

M(u,y)<2-'e~llCoy"-")aexp(X/-Aooy) (y > y,) 

where 

co = ( 2 ~ x / ~ )  -''~, 
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we see that 

Ul(P) = < ~','t/, C o l -  2 - l -  0 (1)}1t Y t["-"'%xp(X/-U~l[ vii) 

for any P = (X, Y), X E B, II YII --> y,. Hence, there are a value M and a point 

P o E B  x R" such that 

(14) m(Po)= M and urn(P)<= M o n B  x R". 

Next, by using the properties of monotonicity and continuity of the eigenvalues 

(e.g. see Courant and Hilbert [2, Theorem 3 on p. 409 and Theorem 10 on p. 

421]), take a bounded regular domain D*, D* C R "  such that 

( D - B ) U 0 ( D - B ) C D *  and ho<ho .<Ao  ~. 

Consider a subharmonic function uffP) on (D - B) x R" defined by 

(15) u2(P) = u,(P) - 712ht,.(P) (rl2 > 0). 

If we take a positive number e2 such that 

[o.(X)>e2 o n ( D - B ) U O ( D - B )  

and a number y2 such that 

M(u, y)< e2,12Co.y"-"~%xp(V'--~oy) (y >= y2), 

we have that 

u2(e) <- _ u ( P ) -  rl2ho.(P ) 

~= e~mco.l[ Y II"-"'/~[exp{(V~o - v ~ . ) l l  g i l t -  (1 + o(1))1 

for any e = (X, Y) E (D - B) x R", II YI[ --> y2. Hence, with (14) the maximal 

principle gives that 

u2(P)<-_max(O,M) o n ( D - B ) x R "  

We also have that 

u,(P)<=max(O,M) o n ( D - B ) x R " ,  

because 72 is chosen arbitrarily small in (15). Further, we have from (14) that 

u,(P) <= max(0,  M )  on  D x R ". 

The maximal principle and (14) give that M =< 0 and hence 

re(P) <= 0 on D x R". 
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Letting r l , ~ 0  in (13), we conclude that 

PROOF OF THEOREM 6. 

that 

Then 

379 

u(P)<=O o n D  x R " .  

For each positive integer m, take a number tm such 

e(t)~l/m (t>-tm). 

u(X, Y)<=/(X){m 'll v II'l-"'%xp(X/~oll riD} 

at eve ry (X ,V)  e D x { Y E R " [ [ [ V l l = > t m } .  If we put 

h,, ( y ) =  rn -~y" - " l J2exp(~y) ,  

we easily see that 

h,,(y + 1 ) -  < _ h,,,(y)exp(kfAoy) (y > t,,,). 

Hence, if we also put u (X, Y) = 0 on R " x R" - H and apply Theorem 2, we can 

find a constant K independent of m such that 

u (X, Y)<= Kh,. (11 vii)= Km '11 Y It" ""2exp(~/~Dll Y II) 

for every (X, Y) C D x { Y E R" [ll vii > tm+ U. This gives that 

lim M(u, y )y 1"-ll'2exp( _ ~ y  ) <__ 0. 
y ~  

The conclusion follows from Theorem 5. 

PROOF OF THEOREM 7. For the subharmonic function u(X, Y) taken in the 

proof of Theorem 4, consider a function 

u (X, Y) - 1 on 110 = Do x R" 

Representing this function by u(X, Y) again, we easily see that it satisfies the 

Phragm6n-Lindel6f boundary condition on cgI1o. Define f(X) on R m by 

f(x) = { 
sup u(X, Y) on D0, 
Y E R "  

0 elsewhere. 
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Then we can show (5) for any l < (m - 1)/m as in the proof of Theorem 4. If we 

define e ( t ) o n  R + by 

e(t)  = t'"-W%xp(- k/~oo t), 

we evidently obtain that (9) holds for these f ( X )  and e(t). 
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